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Abstract

In the last years, one degree of freedom mechanisms has been incorporated into rehabilitation machines. Their designs

usually involve kinematic synthesis leaving aside their complex dynamic nature. An integrated methodology to design

a one degree of freedom eight-bar mechanism for lower limb rehabilitation is presented in this paper. The methodology

simultaneously considers kinematic synthesis, structure shape design, and dynamic performance. A non-linear con-

strained dynamic optimization problem is proposed where the design objective relates the accuracy in the prescribed

movement and the energy consumption reduction. This problem is solved by using different differential evolution vari-

ants for finding the most suitable synergistic solution. The results show that the obtained design can follow the path

with 52.13% less energy consumption compared to a design that does not consider such integration. This also results

in less control effort, and hence the velocity regulation accuracy is improved. The three-dimensional printed prototype

illustrates the obtained solution.

Keywords: Concurrent design, integrated design, rehabilitation mechanism, kinematic synthesis, structure shape

design, dynamic performance.

1. Introduction

Lower limb injuries are the most frequent disabilities for different factors such as traffic accidents, sports injuries,

aging, degenerative diseases, and unhealthy lifestyle. Therefore, rehabilitation therapy is a crucial factor to maintain,

recover and develop the movement of the affected limbs through exercise routines with a minimum interaction of the

physiotherapist.5

In the last years, specialized robotic systems positively improve rehabilitation process and reduce the recovery

time, maximizing the performance of the affected corporal area. Those systems can be divided according to the

applied motion to the patient’s body, the exoskeleton and the end-effector systems [1]. The exoskeleton systems move

limb joints through a mechanical structure that is fixed on the patient limb and, therefore, the structure can move

each part of the limb e.g., the Lokomat robot. Those systems are the high-cost alternatives to reduce the patient10
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recovery time and enhance the skeletal muscle regeneration of the affected limb. On the other hand, in the end-effector

systems, the movement is only carried out in the injured area, with the help of support providing specific trajectories

similar to the natural movement. As the end-effector systems provide particular movements, the use of mechanisms is

increasing because they can perform the particular motion and build them with low-cost and easy-operation features.

For instance, four-bar mechanisms, six and ten-bar mechanisms, and cam-linkage seven-bar crank-slider mechanism15

have been synthesized to follow several precision points described by the gait’s ankle trajectory. The kinematic synthesis

in those works is generally stated as an optimization problem. The performance function is related to the kinematic

performance based on the tracking error between a point into the mechanism and a prescribed trajectory. The solution to

the problem has been firstly addressed with gradient-based techniques and in recent years with Evolutionary Algorithms

(EAs). The latter is less likely to get stuck at local minima, and they are not sensitive to initial conditions. They are20

also free derivative, and they can endow easily, outstanding features of other algorithms. That features make a better

exploration and exploitation in the solution search such that a better synergy in the design solution can be achieved

[2].

The main feature in the lower limb rehabilitation mechanism design as end-effector systems is in the synthesis

process. Usually, the kinematic synthesis based on optimization does not consider the dynamic response. This results in25

designs that require more energy consumption, implying a significant control effort to perform the task. Consequently,

the advanced control design should be used to compensate for the highly nonlinear dynamic behavior [3]. In this

direction, the mechatronic design approach, also called Concurrent Design, has motivated the combination of mechanical

and electrical engineering with software engineering into a single design step to improve the obtained design solution

synergically [4]. The optimal balance in the design specifications of different domains results in mechatronic systems30

with an enhanced synergy [5, 6, 2, 7]. This synergy has shown advantages in the mechatronic system performance over

a traditional design, where the latter fulfills each design requirement in a separate design step [8, 9, 10]. One of the

mechatronic design frameworks is to design the mechanical structure such that the control system is benefited. In [5],

the Design For Control (DFC) approach is developed where the reduction of the shaking force/moment of the system

facilitates the control design. In [11], the bond graphs and the genetic programming are combined to improve the35

complex multi-domain system features related to the mechanical part. Hence, according to [5] and [11], the mechanical

structure positively influences the control design whether suitable performance indexes are considered.

Most of the work related to the lower limb rehabilitation mechanism is traditionally designed based on the kinematic

synthesis, ignoring the dynamic characteristics that can influence the control performance. Even the patient’s lower

limb weight can largely influence the mechanism dynamic behavior and may produce a mechanical failure in joints. Also,40

the existing synthesis techniques in the lower limb rehabilitation mechanism do not take into account the simultaneous

integration of the link shape, which should provide efficient inertial properties of links to minimize the control effort

and, thus, the energy consumption. The structural shape requires other processes to obtain from the inertial properties

the corresponding link shape. Some examples of such processes are the discretization into small mass elements of a

predefined shape and the systematic placement of them along the link length [12], the maximization of the external45
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work constrained by the volume of all links [13], the use of topology optimization [14], among others.

Hence, this paper proposes integrating the kinematic synthesis, the structure shape design, and the dynamics into

the design of one degree of freedom (d.o.f) eight-bar mechanism for the lower limb rehabilitation to reduce the energy

consumption simultaneously. Thus, a simple controller can suitably regulate the system with less control effort in

the next design stage. The design approach is based on the average anthropometry for the Mexican population. It50

is formulated as a mono-objective optimization problem where the combination of design objectives is through the

weighted sum approach employing eight Differential Evolution variants for finding the most suitable synergistic design.

Inverse dynamic analysis of the lower limb rehabilitation mechanism with a stress analysis verifies the obtained design.

A comparative study with a traditional design, where only the kinematic synthesis is considered, shows outstanding

results of the proposed integrated design methodology. The experimental result in a scaled prototype visualizes the55

obtained solution.

The paper is structured as follows: In Section 2 the kinematics and dynamics analysis for the lower limb reha-

bilitation mechanism are detailed. The optimization problem statement for the integrated design methodology called

concurrent design is given in Section 3 and the solvers (Differential Evolution variants) are described in Section 4. The

results and discussion are provided in Section 5. Finally, in Section 6 the conclusions are drawn.60

2. Kinematics and dynamics analysis

The sketch of the one degree of freedom eight-bar rehabilitation mechanism is shown in Fig. 1(a), where ~ls ∀

s = {1, 2, . . . , 9} and ~l′s ∀ s = {6, 8} represent link position vectors with magnitudes of ls, l
′
s and orientations of θs,

θ′s. The (x̄E , ȳE) is the desired path to be followed by the point (xE , yE) in the mechanism by completing a revolution

of the crank link 2. The foot of the patient is placed on the point (xE , yE); hence the corresponding exerted force65

is given by ~FK8 . In the next sub-sections, the rehabilitation mechanism is splitted into two four-bar mechanisms

(M1 = {~l2, ~l5, ~l′6, ~l9} and M2 = {~l1, ~l2, ~l3, ~l4}) and one five-bar mechanism (M3 = {~l4, ~l6, ~l7, ~l8, ~l12}) to obtain the overall

kinematics and dynamics.

2.1. Position analysis

From position vector loop equations (1)-(3) of sub-mechanisms M1, M2 and M3, the angular positions θi and θ′6 ∀70

i = {3, 4, 5, 7, 8} of links are obtained, and they are presented in (S1)-(S6) of the Supplementary Material.

l2e
jθ2 + l5e

jθ5 − l′6ejθ
′
6 − l9ejθ9 = 0 (1)

l2e
jθ2 + l3e

jθ3 − l4ejθ4 − l1ejθ1 = 0 (2)

l6e
jθ6 + l7e

jθ7 − l8ejθ8 − l4ejθ4 − l12e
jθ12 = 0 (3)

2.2. Velocity analysis

The angular velocities ωs ∀ s = {3, ..., 8} of links, given by (S29)-(S34) in the Supplementary Material, are obtained

as follows: From the time derivatives of position vector loop equations (1)-(3), the velocity vector loop equations (4)-(6)
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(a) Sketch (b) Free-body diagram

Figure 1: Sketch of the eight-bar rehabilitation mechanism with its free-body diagram representation for each link.

are set for each sub-mechanism M1, M2 and M3. Then, using the Euler’s formula and separating in equations the real75

and imaginary part, the angular velocities ωs can be obtained by solving such equation system.

jl2e
jθ2ω2 + jl5e

jθ5ω5 − jl′6ejθ
′
6ω6 = 0 (4)

jl2e
jθ2ω2 + jl3e

jθ3ω3 − jl4ejθ4ω4 = 0 (5)

jω6l6e
jθ6 + jω7l7e

jθ7 − jω8l8e
jθ8 − jω4l4e

jθ4 = 0 (6)

2.3. Acceleration analysis

This analysis involves the angular acceleration of links and the mass center’s linear ones because these are required

for the dynamic analysis presented in Section 2.4.

2.3.1. Angular acceleration80

The angular accelerations αs ∀s = {3, ..., 8} of links, given by (S35)-(S40) in the Supplementary Material, are

obtained through a similar procedure given above, but now, the system of equations is provided by the acceleration
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vector loop equations (7)-(9) for each sub-mechanism (M1, M2 and M3).

−l2ejθ2ω2
2 + l2je

jθ2α2 − l5ejθ5ω2
5 + l5je

jθ5α5 + l′6e
jθ′6ω2

6 − l′6jejθ
′
6α6 = 0 (7)

−l2ejθ2ω2
2 + l2je

jθ2α2 − l3ejθ3ω2
3 + l3je

jθ3α3 + l4e
jθ4ω2

4 − l4jejθ4α4 = 0 (8)

−l6ejθ6ω2
6 + l6je

jθ6α6 − l7ejθ7ω2
7 + l7je

jθ7α7 + l8e
jθ8ω2

8 − l8jejθ8α8 + l4e
jθ4ω2

4 − l4jejθ4α4 = 0 (9)

2.3.2. Linear acceleration

The linear acceleration ~aGs
= [aGsx

, aGsy
]T of the s− th link mass center ∀ s = {2, 3, ..., 8} is obtained through the85

second derivative of the mass center position vector with respect to the inertial coordinate x1 − y1. Then, the linear

accelerations in polar coordinates are shown in (10)-(16), where lcs and δs are the position and orientation of the mass

center related to the s− th coordinate frame.

~aG2
= lc2e

j(θ2+δ2)(jα2 − ω2
2) (10)

~aG3
= l2e

jθ2(jα2 − ω2
2) + lc3e

j(θ3+δ3)(jα3 − ω2
3) (11)

~aG4 = lc4e
j(θ4+δ4)(jα4 − ω2

4) (12)

~aG5
= l2e

jθ2(jα2 − ω2
2) + lc5e

j(θ5+δ5)(jα5 − ω2
5) (13)

~aG6 = lc6e
j(θ6+δ6)(jα6 − ω2

6) (14)

~aG7
= l6e

jθ6(jα6 − ω6
2) + lc7e

j(θ7+δ7)(jα7 − ω2
7) (15)

~aG8 = l4e
jθ4(jα4 − ω2

4) + lc8e
j(θ8+δ8)(jα8 − ω2

8) (16)

2.4. Dynamics analysis

In order to obtain the dynamics of the eight-bar rehabilitation mechanism, the applied forces ~Fk̂s = [Fk̂sx
, Fk̂sy

]T90

and torque τ ; and the corresponding position vectors ~Rk̂s = [Rk̂sx
, Rk̂sy

]T ∀ s = {2, ..., 8} ∧ k̂ = {B,C,K} with respect

to the s− th link mass center, are visualized on each link in a Free-Body Diagram (FBD) in Fig. 1(b). The elements

of the s− th vector ~Rk̂s are given in (S41)-(S56) of the Supplementary Material.

By using the Newton’s second law in each link’s Free-body diagram and considering the coordinate system xgs−ygs
and also the rotation axis in zgs , the dynamics equations are obtained. Those dynamics are represented in (17)-(37),95

where ms is the s− th link mass, IsG is the s− th link inertia moment and g is the gravity acceleration.

The force and torque analysis in the FBD of link two is represented by:

FC2x
+ FB2x

= m2aG2x (17)

FC2y
+ FB2y

= m2aG2y
+m2g (18)

τ +RC2x
FC2y

−RC2y
FC2x

+RB2x
FB2y

−RB2y
FB2x

= I2G
α2 (19)
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The force and torque analysis in the FBD of link three is represented by:

FC3x
+ FB3x

= m3aG3x (20)

FC3y
+ FB3y

= m3aG3y
+m3g (21)

RC3x
FC3y

−RC3y
FC3x

+RB3x
FB3y

−RB3y
FB3x

= I3G
α3 (22)

The force and torque analysis in the FBD of link four is represented by:

FC4x
− FB3x

− FC8x
= m4aG4x

(23)

FC4y
− FB3y

− FC8y
= m4aG4y +m4g (24)

RC4x
FC4y

−RC4y
FC4x

−RB4x
FB3y

+RB4y
FB3x

−RB4x
FC8y

+RB4y
FC8x

= I4G
α4 (25)

The force and torque analysis in the FBD of link five is represented by:100

FB5x
− FB2x

− FC3x
= m5aG5x

(26)

FB5y
− FB2y

− FC3y
= m5aG5y

+m5g (27)

RB5x
FB5y

−RB5y
FB5x

−RC5x
FB2y

+RC5y
FB2x

−RC5x
FC3y

+RC5y
FC3x

= I5G
α5 (28)

The force and torque analysis in the FBD of link six is represented by:

FC6x
+ FB6x

− FB5x
= m6aG6x (29)

FC6y
+ FB6y

− FB5y
= m6aG6y

+m6g (30)

RC6x
FC6y

−RC6y
FC6x

+RB6x
FB6y

−RB6y
FB6x

−RK6x
FB5y

+RK6y
FB5x

= I6G
α6 (31)

The force and torque analysis in the FBD of link seven is represented by:

FB7x
− FB6x

= m7aG7x
(32)

FB7y
− FB6y

= m7aG7y +m7g (33)

RB7x
FB7y

−RB7y
FB7x

−RC7x
FB6y

+RC7y
FB6x

= I7G
α7 (34)

The force and torque analysis in the FBD of link eight is represented by:

FK8x
+ FC8x

− FB7x
= m8aG8x

(35)

FK8y
+ FC8y

− FB7y
= m8aG8y

+m8g (36)

RK8x
FK8y

−RK8y
FK8x

+RC8x
FC8y

−RC8y
FC8x

−RB8x
FB7y

+RB8y
FB7x

= I8G
α8 (37)

The inverse dynamic model of the rehabilitation mechanism can be reduced as X̌ = Ǎ−1B̌ by grouping (17)-(37).

The matrix Ǎ ∈ R21×21 and the vector B̌ ∈ R21 are described in (S57)-(S58) of the Supplementary Material and

X̌ ∈ R21 is described in (38).

X̌ = [FC2x
FC2y

FB2x
FB2y

FC3x
FC3y

FB3x
FB3y

FC4x
FC4y

FB5x
FB5y

FC6x
FC6y

FB6x
FB6y

FB7x
FB7y

FC8x
FC8y

τ ]T
(38)

It is important to remark that the force applied in the (xE , yE) coordinate of the mechanism (see Fig. 1(a)) and the

6



crank angular velocity ω2, are chosen as ~FK8 = [0,−133.41]TN and ω2 = 2π rad/s (with acceleration of α2 = 0 rad/s2),105

respectively. Those values are considered in Section 5 for the design analysis of a complete rehabilitation mechanism

cycle. The force ~FK8
is set by considering the maximum mass of the Mexican population’s lower limb [15], which results

from 16% of the maximum corporal mass (85 kg). Besides, the angular velocity ω2 represents the maximum speed for

the rehabilitation trajectory cycle.

3. Concurrent design of the rehabilitation mechanism110

The rehabilitation mechanism design simultaneously considers the dimensional synthesis, the structure shape design,

and the dynamic performance in a single design step. This design is stated as an optimization problem where the spatial

and temporal requirements are taken into account to improve the movement quality and energy consumption. In the

next subsections, the details of the optimization problem are given.

3.1. Objective functions115

The main dimensional synthesis goal is to follow twenty desired precision points of a semi-ellipse trajectory [16].

The continuous closed-trajectory can track a similar semi-ellipse trajectory fulfilling such points. Then, the precision

point tracking error shown in (39) is one of the design objectives to be optimized, where ē = [[x̄E , ȳE ]− [xE , yE ]]T and

tf is the final time.

J̄1 =
1

tf

∫ tf

0

ēT · ē · dt (39)

On the other hand, the mechanism’s dynamic performance is influenced by the link mass redistribution, which120

directly affects energy consumption, the driving torque variation, and peak-to-peak magnitude. Assuming that the

crank link has constant velocity, the energy consumption is related to the input torque. Hence, the average of the

applied torque in the crank of the rehabilitation mechanism (the load presented in the mechanism dynamics) is the

second design objective to be included as is displayed in (40).

J̄2 =
1

tf

∫ tf

0

τ2 · dt (40)

3.2. Design variables125

The design variables include the kinematic vector p̃ki = [l1, l2, ..., l9, l
′
6, l
′
8, θ1, θ9, θ̂6, θ̂8, xini, yini, θ2(t0), θ2(t1), ...,

θ2(tf )]T ∈ R17+Ñ and the shape vector p̃sh = [b2, ..., b8, c2, ..., c8, d2, ..., d8, e2, ..., e8, f2, ..., f8, g2, ..., g8, h2, ..., h8, i2, ..., i8,

j2, ..., j8, k2, ..., k8]T ∈ R70. The kinematic parameters are represented by the link lengths ~ls ∀ s = {1, 2, ..., 9} and ~l′s

∀ s = {6, 8}; the link angles θ1, θ9, θ̂6 and θ̂8; the origin (xini, yini) of the coordinate system X̄T − ȲT where the

desired trajectory is performed (see Fig. 1(a)); and the angular displacement of the crank θ2(t) where the time is130

t = 0, tf/(Ñ − 1), ..., itf/(Ñ − 1) ∈ [0, tf ], ∀i = 0, 1, ..., Ñ − 1 with tf = 1 s as the average time to complete the gait

cycle [17] and Ñ as the number of precision points. In this paper, octagonal prisms are considered as link shapes. So,
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Figure 2: Octagonal link shape.

the shape parameters are the edges of the octagonal prism as is shown in Fig. 2. Two different links are considered:

binary links (sixth and eighth links) and ternary links (second to fifth links and seventh link). The binary links have

twelve parameters (ls, bs, cs, ds, es, fs, gs, hs, is, js, ks, φs) whereas the ternary links additionally include the length l′s135

and the angle θ̂s.

Therefore, the design variable vector p ∈ R87+Ñ is given in (41). It is important to mention that this vector changes

the link mass distribution (the dynamic parameters of the s− th link i.e., mass ms, mass center vector ~lcs = [lcxs
, lcys ]

and inertia Is) and as a consequence, the dynamic behavior of the mechanism can be modified.

p = [pki, psh]T (41)

Simple geometries are considered to simplify the dynamic parameter computation in terms of shape parameters. In

the dynamic parameters, the aluminum density ρs = 2710Kg/m3 is selected, and the diameter φs = 0.01905m is set

for all link holes.

3.2.1. Mass140

The mass ms of the s− th link is presented in (42), where mks ∀ k = {A,B, ...,H, J,K} is the mass of the k − th

simple geometry.

ms =mAs
−mBs

−mCs
+mDs

+mEs
−mFs

−mGs
−mHs

−mJs −mKs
(42)

where:

mAs = ρs · (ls + bs + ds) · cs · es mCs = mBs =
ρs·π·φ2

s·es
4 mDs

= ρs · (ls + bs + ds) · fs · es
mEs

= ρs · (ls + bs + ds) · gs · es mFs
= ρs·hs·fs·es

2 mGs
= ρs·is·fs·es

2

mHs
= ρs·js·gs·es

2 mJs = ρs·ks·gs·es
2 mKs

=


ρs·π·φ2

s·es
4 if s = 6, 8

0 Otherwise

(43)
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3.2.2. Mass center

The mass center coordinates (lcxs , lcys) are presented in (44).

lcxs
=

1

ms
(xAs

·mAs
− xBs

·mBs
− xCs

·mCs
+ xDs

·mDs
+ xEs

·mEs
− xFs

·mFs
− xGs

·mGs
−

xHs
·mHs

− xJs ·mJs − xKs
·mKs

)

lcys =
1

ms
(yAs

·mAs
− yBs

·mBs
− yCs

·mCs
+ yDs

·mDs
+ yEs

·mEs
− yFs

·mFs
− yGs

·mGs
−

yHs ·mHs − yJs ·mJs − yKs ·mKs)

(44)

where the mass center coordinates of each simple geometry represented as (xks , yks) ∀ k = {A,B, ...,H, J,K} are given

by:

xAs
= xDs

= xEs
= ls+bs+ds

2 − bs xBs
= ls xCs

= 0

xFs
= hs

3 − bs xGs
= ls + ds − is

3 xHs
= js

3 − bs
xJs = ls + ds − ks

3 yAs = yBs = yCs = 0 yDs = fs+cs
2

yEs
= − gs+cs

2 yFs
= yGs

= ( cs2 + 2
3fs) yHs

= yJs = (− cs2 −
2
3gs)

xKs
=

 l′s · cos(θ̂s) if s = 6, 8

0 Otherwise
yKs

=

 l′s · sin(θ̂s) if s = 6, 8

0 Otherwise

(45)

3.2.3. Inertia

The s− th inertia Is of the link is shown in (46).

Is = IAs
− IBs

− ICs
+ IDs

+ IEs
− IFs

− IGs
− IHs

− IJs − IKs
(46)

where the inertia Iks of the k − th simple geometry ∀ k = {A,B, ...,H, J,K} is defined in (47).

IAs =
mAs
12

[(ls + bs + ds)
2 + c2s] +mAs [(xAs − lcxs)2 + lc2ys ] IFs =

mFs
18

(h2
s + f2

s ) +mFs [(xFs − lcxs)2 + (yFs − lcys)2]

IBs =
mBs

2

φ2
s
4

+mBs [(xBs − lcxs)2 + lc2ys ] IGs =
mGs
18

(i2s + f2
s ) +mGs [(xGs − lcxs)2 + (yGs − lcys)2]

ICs =
mBs

2

φ2
s
4

+mBs(lc2xs + lc2ys) IHs =
mHs
18

(j2s + g2s) +mHs [(xHs − lcxs)2 + (yHs − lcys)2]

IDs =
mDs
12

[(ls + bs + ds)
2 + f2

s ] +mDs [(xDs − lcxs)2 + (yDs − lcys)2] IJs =
mJs
18

(k2s + g2s) +mIs [(xJs − lcxs)2 + (yJs − lcys)2]

IEs =
mEs
12

[(ls + bs + ds)
2 + g2s ] +mEs [(xEs − lcxs)2 + (yEs − lcys)2]

IKs =


mBs

2

φ2
s
4

+mBs [(xKs − lcxs)2 + (yKs − lcys)2] if s = 6, 8

0 Otherwise

(47)

3.3. Constraints

The design constraints are splitted into three groups. The groups are related by the kinematic, dynamic, and shape

design. Those are described in the next sections.145

3.3.1. Kinematic constraints

The kinematic constraints include the equality constraints given by kinematics of the mechanism (48) and the

desired precision points (49); and the inequality constraints provided by the Grashof criterion (50)-(55) and the quality

9



ti x̄T ȳT ti x̄T ȳT ti x̄T ȳT
t0 0 0 t7 0.1750 0 t14 0.2591 0.1029
t1 0.025 0 t8 0.2 0 t15 0.2094 0.1377
t2 0.05 0 t9 0.225 0 t16 0.15 0.15
t3 0.075 0 t10 0.25 0 t17 0.0906 0.1377
t4 0.1 0 t11 0.275 0 t18 0.0409 0.1029
t5 0.125 0 t12 0.3 0 t19 0.009 0.0513
t6 0.15 0 t13 0.291 0.0513

Table 1: Twenty desired precision points (Ñ = 20) for the human gait in the (x̄T , ȳT ) coordinate system.

of motion transmission (56)-(61).

The mechanism’s kinematic is required to know the (xE , yE) coordinate in the mechanism. The desired precision150

points in the Cartesian coordinate X̄T − ȲT are given in Table 1. Twenty precision points of a semi-ellipse trajectory

are considered based on [16] because they represent the main points of interest in the closed trajectory. The continuous

closed-trajectory can track a similar semi-ellipse trajectory fulfilling such points. This trajectory represents the physical

therapy related to physical exercise to the rehabilitation process. The Grashof constraint ensures that the four-

bar mechanism into the rehabilitation one can develop a full crank movement. The quality of motion transmission155

guarantees the maximum efficiency in the force transmission from the crank link to the (xE , yE) point. For more detail

about the kinematic constraints (48)-(61), see [16].
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h1 = 0 :

 xE(t)

yE(t)

−
 l2 cos(θ2(t)) + l3 cos(θ3(t)) + l′8 cos(θ8(t) + θ̂8)

l2 sin(θ2(t)) + l3 sin(θ3(t)) + l′8 sin(θ8(t) + θ̂8)

 =

 0

0

 (48)

h2 = 0 : [x̄E(t), ȳE(t)]− [xini, yini]− [xT (t), yT (t)] = [0, 0] (49)

g1 ≤ 0 : l2 + l1 − l3 − l4 ≤ 0 (50)

g2 ≤ 0 : −l4 − l1 + l2 + l3 ≤ 0 (51)

g3 ≤ 0 : −l3 − l1 + l2 + l4 ≤ 0 (52)

g4 ≤ 0 : l2 + l9 − l3 − l′6 ≤ 0 (53)

g5 ≤ 0 : −l′6 − l9 + l2 + l3 ≤ 0 (54)

g6 ≤ 0 : −l3 − l9 + l2 + l′6 ≤ 0 (55)

g7 ≤ 0 :
π

4
− cos−1

(
l23 + l24 − (l1 − l2)2

2l3l4

)
≤ 0 (56)

g8 ≤ 0 :
π

4
− cos−1

(
l25 + l′6

2 − (l9 − l2)2

2l5l′6

)
≤ 0 (57)

g9 ≤ 0 : cos−1

(
l23 + l24 − (l1 + l2)2

2l3l4

)
− 3π

4
≤ 0 (58)

g10 ≤ 0 : cos−1

(
l25 + l′6

2 − (l9 + l2)2

2l5l′6

)
− 3π

4
≤ 0 (59)

g11 ≤ 0 : θ8(t)− θ7(t) + 2π − 3π

4
≤ 0 (60)

g12 ≤ 0 :
π

4
− θ8(t)− θ7(t) + 2π ≤ 0 (61)

3.3.2. Dynamic constraints

The Inverse Dynamic Model (IDM) of the rehabilitation mechanism and mechanical failure prevention in joints

conform the dynamic constraints.160

The IDM computes the input torque generated in the crank link and also forces in joints of the rehabilitation

mechanism required to track the precision points with the external force ~FK8
exerted in the (xE , yE) mechanism

coordinate. Then, the IDM is included as equality constraints (62).

h3 : X̌ − Ǎ(p)−1B̌(p) = 0 (62)

The other important dynamic constraint is related to the maximum applied forces supported by link joints. Those

joints are more prone to get a mechanical failure, i.e., the maximum stress is presented in those areas. Let the s− th

contact area as = π
4φses of the joint forces and the k̂ − th contact stress in the s− th contact area σk̂s =

||~Fk̂s
||

as
, then

the safety factor for each joint must be larger or at least equal than the design factor Fcmin = 1.5. Therefore, the

inequality constraint (63) related to avoiding the mechanical failure in joints is incorporated, where the permissible
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stress σadm = 6.2052× 107Pa of the aluminum is related to the elastic limit.

g13 ≤ 0 : Fcmin −
σadm
σk̂s

≤ 0 ∀ k̂ = {B,C,K} ∧ s = {2, 3, ..., 8} (63)

3.3.3. Link shape constraints

The first link shape constraints (64)-(65) keeps the octagonal prism shape.165

g14 ≤ 0 : hs + is − bs − ls − ds ≤ 0 ∀ s = {2, 3, ..., 8} (64)

g15 ≤ 0 : js + ks − bs − ls − ds ≤ 0 ∀ s = {2, 3, ..., 8} (65)

The second constraints avoid the overlapping of the Ks, Cs and Bs holes. This is represented by (66)-(68). In this

case, the minimum distance between hole edges is chosen as ψs = 1.5φs to prevent tearing fail.

g16 ≤ 0 : ψs − ls + φs ≤ 0 ∀ s = {2, 3, ..., 8} (66)

g17 ≤ 0 : ψs −
√
x2
Ks

+ y2
Ks

+ φs ≤ 0 ∀ s = {6, 8} (67)

g18 ≤ 0 : ψs −
√

(xKs
− xBs

)2 + (yKs
− yBs

)2 + φs ≤ 0 ∀ s = {6, 8} (68)

The third constraints determine if the Ks, Cs and Bs holes are inside of the octagonal area i.e, set a minimal distance

from the hole to the collinear lines zi = 0 ∀ i = {1, 2, ..., 8} of the link edges. This is represented by (69)-(76). The

collinear lines can be expressed as Āxk̂s + B̄yk̂s + C̄ = 0, where the coordinate (xk̂s , yk̂s) is with respect to the frame170

xs − ys in the octagonal link (see Fig. 2) and the terms Ā, B̄ and C̄ are the polynomial coefficients. Given the

coordinate (xk̂s , yk̂s) ∀ k̂ = {K,C,B} as the hole center and considering that zi ≤ 0 ∀ i = {1, 2, ..., 8}, the k̂ − th hole

center of the s− th link must be in the Hole Feasible Region (HFR), see Fig. 2. Then, the perpendicular distance from

the hole center point to the corresponding collinear line zi = 0 of the link edges must be smaller than D̄ = −ζs − φs

2

i.e.,
Ā·xk̂s

+B̄·yk̂s
+C̄√

Ā2+B̄2
≤ D̄ to guarantee that the complete hole is in HFR. The term ζs = 1.5φs is established as the175

distance between the hole edge and the octagonal edge to avoid tearing fail.

g19 ≤ 0 :

z1︷ ︸︸ ︷
−yk̂s −

cs
2
− gs + ζs +

φs
2
≤ 0 (69)

g20 ≤ 0 :

z2︷ ︸︸ ︷
−yk̂s −

gs
js
· xk̂s −

cs
2 + gs·bs

js√
gs
js

2
+ 1

+ ζs +
φs
2
≤ 0 (70)

g21 ≤ 0 :

z3︷ ︸︸ ︷
−xk̂s − bs + ζs +

φs
2
≤ 0 (71)

g22 ≤ 0 :

z4︷ ︸︸ ︷
yk̂s −

fs
hs
· xk̂s −

cs
2 −

fs·bs
hs√

fs
hs

2
+ 1

+ ζs +
φs
2
≤ 0 (72)

g23 ≤ 0 :

z5︷ ︸︸ ︷
yk̂s −

cs
2
− fs + ζs +

φs
2
≤ 0 (73)
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g24 ≤ 0 :

z6︷ ︸︸ ︷
yk̂s + fs

is
· xk̂s −

cs
2 −

fs·(as+ds)
is√

fs
is

2
+ 1

+ ζs +
φs
2
≤ 0 (74)

g25 ≤ 0 :

z7︷ ︸︸ ︷
xk̂s − as − ds + ζs +

φs
2
≤ 0 (75)

g26 ≤ 0 :

z8︷ ︸︸ ︷
−yk̂s −

gs
ks
· xk̂s −

cs
2 −

gs·(as+ds)
ks√

gs
ks

2
+ 1

+ ζs +
φs
2
≤ 0 (76)

3.3.4. Design variable bounds

The last constraints associate the bounds in the design variables p ∈ R87+Ñ to limit the search for the solution.

In (77), those bounds are established as inequality constraints, where pmin and pmax are the minima and maximum

design variable values, and those are presented in Table 2.

pmin ≤ p ≤ pmax (77)

3.3.5. Optimization problem statement

The optimization problem consists of finding the kinematic and shape design variable grouped in p ∈ R87+Ñ
180

that minimize the precision point tracking error J̄1 and the energy consumption J̄2 subject to the bounds in p, the

kinematic, the dynamic, and the link shape constraints. This multi-objective optimization problem is formulated as a

mono-objective one with the weighted sum approach as is shown in (78)-(81). The desired trade-off is selected through

the weights κ1 = 1 and κ2 = 1× 10−6. These weights are chosen by a series of trial and error procedures.

Min
p

J = κ1 · J̄1 + κ2 · J̄2

subject to:
(78)

g(p) ≤ 0 (79)

h(p) = 0 (80)

pMin ≤ p ≤ pMax (81)

4. Differential evolution algorithm185

The Differential Evolution (DE) algorithm is used to solve the optimization problem. This is classified as an

Evolutionary Algorithm (EA), and it is a stochastic search method. The algorithm was proposed in 1995 by R.

Storn y K. V. Price [18]. DE has been used in diverse applications in mechanical engineering, communications, and

pattern recognition. The operating principle of DE is the natural evolution and survival of the fittest to search for

better solutions in each generation through three basic operators of the evolutionary process: mutation, crossover,190

and selection. These operators allow exploring/exploiting the search space to find a region near the global solution

and hence, avoid local solutions. DE has been used to solve engineering problems and gained more attention in the
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Algorithm 1 Pseudo-code of the differential evolution variants DE/a/b/c.

1: Generate initial population X0 with NP individuals.
2: Evaluate X0

3: G← 0
4: while G ≤ Gmax do
5: for each xi ∈ XG do
6: Generate a child individual ui based on (82)-(89)
7: Evaluate ui
8: end for
9: Select individuals for G+ 1 according to CHC

10: G← G+ 1
11: end while

synthesis of mechanisms [19, 20]. This is because they provide good approximate solutions, are less likely to get stuck

at local minima, and are not sensitive to initial conditions; they are free derivative, and also they can endow, in an

easy way, outstanding features of other algorithms to make a better exploration and exploitation in the solution search.195

Nevertheless, the DE algorithm and all EAs require several tests to verify the reliability of the obtained solution. For

instance, at [21] the authors showed that DE performs better than Particle Swarm Optimization (PSO) and Genetic

Algorithms (GA) for the synthesis of four-bar mechanisms.

In this work, eight variants of differential evolution are considered. Each variant is different by the crossover and

mutation process. The most popular nomenclature for the variants is referred to as DE/a/b/c, where DE means200

differential evolution, a indicates the individual’s selection for the mutation stage, b is the number of pairs of solutions,

and c means the type of recombination.

Algorithm 1 shows the DE pseudo-code. The process starts with an initial population X0 called parents with NP

randomly generated individuals in the search space. The parents mutate and recombine through each generation G

by using (82) - (89) to generate the child population. The mutation rate F is randomly selected per generation in the205

range [0.3, 0.9], CR is the crossover rate and the superscript ri ∀ i = {1, 2, 3} and best indicate the random and the best

individuals obtained from the parent population. The child and parent population compete between them to preserve

the aptest in the next generation. The synergy between the precision in the point tracking and the energy consumption

must be considered in the optimization problem formulation and an important factor to be analyzed in the Concurrent

Design is the search for solutions that promote a better design trade-off. As the No Free Lunch Theorem states [22] that210

an algorithm would perform well on a certain class of problems, but it could not be true for the remaining problems, then

it is necessary to use different optimization techniques to find the most suitable solution in the particular optimization

Kinematic parameters p̃ki pmin pmax Shape parameters p̃sh pmin pmax

p1-p11 0 0.75 p52 0 0.3
p12-p15, p18-p37 0 2π p53-p55, p57 0 0.15
p16 -1.875 1.875 p59-p65 0.01 0.05
p17 -1.875 -0.15 p80-p107 0 1.875
Shape parameters p̃sh

p38-p41, p43, p45-p48, p50, p66-p69, p71, p73-p76, p78 0 0.1
p42, p44, p49, p51, p56, p58, p70, p72, p77, p79 0 0.5

Table 2: Maximum and minimum design parameters vector p.
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problem. Eight different DE variants are considered to promote further exploration and exploitation of the search space

and hence, promote different synergy (reconfigurability) in the lower limb rehabilitation mechanism. Those variants

are chosen according to the kind of recombination operator and the individuals’ selection in the mutation process. Four215

variants present binomial and exponential discrete recombination. Those are: Rand/1/Bin (DER1B), Best/1/Bin

(DEB1B), Rand/1/Exp (DER1BE) and Best/1/Exp (DEB1E). Two variants includes arithmetic recombination such

as Current− to−Rand/1 (DECR1) and Current− to−Best/1 (DECB1). The last two variants have hybrid operators

between the arithmetic and the discrete recombination. Those are: Current − to − Rand/1/Bin (DECR1B) and

Current− to−Rand/1/Exp (DECR1E).220

Binomial discrete recombination:

Rand/1/Bin : uij =

 vij = xr3j + F (xr1j − x
r2
j ), if randj(0, 1) < CR or j = jrand

xij , Otherwise
(82)

Best/1/Bin : uij =

 vij = xbestj + F (xr1j − x
r2
j ), if randj(0, 1) < CR or j = jrand

xij Otherwise
(83)

Rand/1/Exp : uij =

 vij = xr3j + F (xr1j − x
r2
j ), from randj(0, 1) < CR or j = jrand

xij , Otherwise
(84)

Best/1/Exp : uij =

 vij = xbestj + F (xr1j − x
r2
j ), from randj(0, 1) < CR or j = jrand

xij Otherwise
(85)

Arithmetic recombination:

Current− to−Rand/1 : ~ui = vij = ~xi +K(~xr3 − ~xi) + F (~xr1 − ~xr2) (86)

Current− to−Best/1 : ~ui = vij = ~xi +K(~xbest − ~xi) + F (~xr1 − ~xr2) (87)

Arithmetic-discrete recombination:

Current− to−Rand/1/Bin : uij =

 uij = xij +K(xr3j − x
i
j) + F (xr1j − x

r2
j ) if randj(0, 1) < CR or j = jrand

xij Otherwise
(88)

Current− to−Rand/1/Exp : uij =

 uij = xij +K(xr3j − x
i
j) + F (xr1j − x

r2
j ) from randj(0, 1) < CR or j = jrand

xij Otherwise
(89)

On the other hand, the selection process between the child and the parent population is based on the following

statement [23]:

1. A feasible individual is chosen over an infeasible one.

2. Between two feasible individuals, the one with a higher fitness is chosen.

3. Between two Infeasible Individuals (InfInd), the one with the lowest constraint distance is chosen i.e.,
∑m
i max(0, gi).225

4. Between two Infeasible Individuals with the same constraint distance, the individual is chosen by a random

selection.

Unlike what was reported in [23], the penalization of the infeasible individuals is taken with respect to the sum of

the constraint value instead of the number of violated constraints. Based on a series of empirical experiments, this
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Algorithm Mean Standard Median Best Worst
deviation

DER1B 0.0007609 0.000434 0.0008604 1.958× 10−5 0.001476
DER1E 0.00251 0.0003648 0.002448 6.797× 10−5 0.04095
DEB1B 0.001139 0.0008696 0.001023 4.14× 10−5 0.00446
DEB1E 0.002997 0.00109 0.002818 6.369× 10−5 0.2768
DECR 0.001183 0.00053 0.00126 4.747× 10−5 0.07003
DECB 0.002226 0.002894 0.001444 18.34× 10−5 0.6288

DECR1B 0.0008602 0.0004145 0.0009596 7.493× 10−5 0.01917
DECR1E 0.002421 0.0003408 0.002352 8.866e× 10−5 0.03839

Table 3: Descriptive statistic of the DE variant executions.

promotes an efficient search in the mechanism synthesis of the lower limb rehabilitation mechanism.230

5. Results

This section involves the performance analysis in the optimization algorithm to find the most suitable synergy in

the Concurrent Design for the lower limb rehabilitation mechanism and also, obtain the design for carrying out the

repetitive gait movement with less energy consumption. Besides, the comparative analysis of the proposed Concurrent

Design approach with respect to a mechanism designed with a traditional design approach is carried out.235

5.1. Algorithm performance analysis for finding the optimum solution

Thirty independent executions for each of the eight DE variants are developed in C programming language by using

a personal computer with AMD A8-7410 APU @ 2.20 GHz processor and 12GB of RAM. The algorithm parameters

are set as follows: Sixty individuals into the population, i.e., NP = 60 with a maximum generation number of

Gmax = 200000. The crossover rate is chosen as CR = 0.9, and the scale factor F and the parameter K are randomly240

selected in the interval [0.3, 0.9].

In each execution, the average value of the objective functions of individuals in the last generation is stored, and

the data for all executions are analyzed by using the descriptive statistic shown in Table 3. According to this table, the

Rand/1/Bin variant of the differential evolution algorithm (DER1B) presents the smallest mean value and finds the

minimum value of the objective function through executions (the best design solution in the optimization problem) with245

respect to the other DE variants. Hence, the DER1B variant provides an efficient exploration and exploitation in search

of a solution. Hence, it promotes the best synergy (reconfigurability) in the design of the lower limb rehabilitation

mechanism.

The behavior of the objective functions for the best solution per each DE variant is displayed in Fig. 3. This

empirically confirms that exponential discrete recombination in DECR1E, DER1E, and DEB1E variants increases250

the exploration of the search space due to the objective functions becoming settled around sixty percent of the total

generations. Meanwhile, the use of binomial discrete recombination (DEB1B, DECR1B) and the arithmetic ones

(DECR,DECB) enhance the exploitation of the search space because the objective functions become settled around

the five percent of the total generations. Increasing only the exploration or the exploitation of the search space results

in local optimum solutions. So, the best performance is obtained by the DER1B. This is attributed because it can255
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Figure 3: Objective function convergence of the best solution per each DE variant.

Kinematic parameters p̃∗ki
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

0.5981 0.1397 0.7102 0.6402 0.5136 0.5560 0.5779 0.5673 0.6601 0.3047 0.3115 1.8190 2.6483 5.2237
P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28

0.1413 -0.4954 -0.3949 3.1571 2.9244 2.7350 2.5770 2.4377 2.3019 2.1657 2.0208 1.8622 1.6834 1.4707
P29 P30 P31 P32 P33 P34 P35 P36 P37

1.1568 0.7969 0.2187 5.9403 5.4842 5.0356 4.5801 4.1582 3.7168

Shape parameters p̃∗sh
P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50 P51

0.3000 0.2998 0.0772 0.0896 0.2082 0.3000 0.4960 0.1000 0.0763 0.0760 0.0992 0.1132 0.0762 0.0692
P52 P53 P54 P55 P56 P57 P58 P59 P60 P61 P62 P63 P64 P65

0.0381 0.0383 0.0383 0.0382 0.0382 0.0382 0.0382 0.0500 0.0100 0.0100 0.0499 0.0100 0.0100 0.0100
P66 P67 P68 P69 P70 P71 P72 P73 P74 P75 P76 P77 P78 P79

0.1000 0.0001 0.0005 0.0000 0.0007 0.0000 0.0475 0.0999 0.0002 0.0997 0.1000 0.2476 0.1000 0.0035
P80 P81 P82 P83 P84 P85 P86 P87 P88 P89 P90 P91 P92 P93

0.0000 0.0332 0.1977 0.2928 0.3097 0.1261 0.8049 0.1596 0.9101 0.1801 0.3411 0.3606 0.1246 0.2941
P94 P95 P96 P97 P98 P99 P100 P101 P102 P103 P104 P105 P106 P107

0.0006 0.0063 0.0020 0.0002 0.3454 0.0001 0.3445 0.3939 1.0123 0.4199 0.0002 0.4354 0.8256 0.0340

Table 4: Optimum design variable vector p∗ = [p̃ki, p̃sh]T obtained by the Concurrent Design approach.

efficiently balance the trade-off between the exploration and exploitation processes in search of the solution such that

better reconfigurability in the rehabilitation mechanism design is achieved.

5.2. Performance analysis in the obtained design for the rehabilitation mechanism.

According to the descriptive statistics given in Table 3, the best design solution p∗ obtained by DER1B is shown in

Table 4. This has an objective function of J∗ = 1.958×10−5. The link shapes are presented in Fig. 4. The performance260

in the precision point tracking is introduced in Fig. 5 where the precision point tracking error is J̄∗1 = 1.53× 10−5 m2

which provides a maximum and minimum Euclidean distance between the desired and generated precision points of

9× 10−3 m and 9.68× 10−5 m, respectively. In addition, the total applied torque is J̄∗2 = 4.18 N2m2. It is important

to remark that the obtained solution fulfills the design constraints given in Section 3.

On the other hand, a Finite Element Analysis (FEA) is carried out for each link to get the von Mises stress. The265

Matlab® software and the PDE Modeler Tool are used to perform the two-dimensional FEA. The numerical simulation

of the inverse dynamic analysis is carried out to obtain the maximum magnitude of the joint force. For this analysis an

integration step of 1ms with a maximum crank speed of ω2 = 2π rad/s are taken into account for a complete cycle of

the rehabilitation mechanism (full rotation of the mechanism crank). With the maximum force information and with
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C.D. width=0.05 m |T.D. width=0.01 m C.D. width=0.01001 m |T.D. width=0.01 m C.D. width=0.01003 m |T.D. width=0.01 m

(a) Link 2 (b) Link 3 (c) Link 4
C.D. width=0.0499 m |T.D. width=0.01 m C.D. width=0.01 m |T.D. width=0.01 m

C.D. width=0.01001 m |T.D. width=0.01 m

(d) Link 5 (e) Link 6 (f) Link 7
C.D. width=0.01 m |T.D. width=0.01 m

(g) Link 8

Figure 4: Link shapes of the optimal solution. Continuous line and dashed line represent the obtained solution by the proposed Concurrent
Design (C.D.) approach and by the Traditional Design (T.D.) approach, respectively. The maximum von Mises stress of links in the
Concurrent Design is also visualized.

18



Figure 5: Behavior of the precision point tracking with the best design p∗.

Link 2 3 4 5 6 7 8
σvM [Pa] 4.8327× 105 1.2631× 106 1.6388× 106 3.4113× 105 3.1355× 106 1.1951× 106 1.2848× 106

Table 5: Von Mises maximum stress through the full rotation of the crank.

the maximum applied force ~FK8
= [0,−133.41]T N in the point (xE , yE) related to the lower limb weight, the FEA270

analysis can be done.

The von Mises stress σvM for each link is shown in Fig.4 where the maximum values are presented in Table 5 . As can

be observed, the maximum von Mises stress in the links does not overcome the permissible stress σadm = 62052815.64 Pa

of the link material (aluminum). Hence, the rehabilitation mechanism cannot present permanent deformation in the

links with the maximum mass of the Mexican population lower limb, i.e., the link material does not yield with such a275

force.

5.3. Biomechanical analysis of the rehabilitation machine

The Computer-Aided Design (CAD) of the obtained rehabilitation mechanism with the best-found design (p∗) is

displayed in Fig. 6. The position of the seat is a key factor for guaranteeing that the rehabilitation machine allows the

natural movement of the lower limb and avoids joint mobility problems. Considering that the maximum and minimum280

reported human height H of the Mexican population is H = 1.90 m and H = 1.63 m, respectively [17], and employing

the anthropometric analysis [24] to compute the corresponding thigh and leg lengths, the seat position coordinate

(xA, yA) can be obtained from the origin x1 − y1 as xA = 0.5589H − 0.6959 m and yA = −0.1318 m. For more details

of the procedure to obtain the seat coordinates ([xA, yA]), see (S59)-(S63) of the Supplementary Material.

The biomechanical analysis of the rehabilitation machine consists of testing the movement of the lower limb.285

When the foot is tied to the Cartesian point [xE , yE ] of the mechanism, we must guarantee that the rehabilitation

machine allows the lower limb’s natural movement to avoid joint mobility problems. In this case, the coxofemoral

joint angle ξ and the knee joint angle ϕ for the full rotation of the crank is presented in Fig. 7. These joint angles

are obtained by developing the numerical simulation of the lower limb movement in Solidworks® using the maximum

(1.90 m), and minimum (1.63 m) reported height of the Mexican population [17]. The corresponding thigh-length290

Lt = 0.53H − 0.285H and leg ones Ll = 0.285H − 0.039H in the numerical simulation are computed by employing the
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(a) (b)

Figure 6: The CAD of the obtained eight-bar mechanism for the rehabilitation machine.

(a) Coxofemoral joint movement ξ. (b) Knee joint movement ϕ.

Figure 7: Lower limb joint behavior considering a full crank rotation of the eight-bar mechanism with the maximum and minimum height
of the Mexican population.

anthropometric analysis in [24], where H is the human height. For illustrative purpose, a CAD representation of the

lower limb movement in the rehabilitation machine for the Mexican population’s average height is presented in Fig. 8.

Based on Fig. 7, it is confirmed that the joint angles are into the permitted lower limb natural movement [25].

For the particular case of the Mexican population, the coxofemoral and knee joint movements are into the interval295

[−0.34, 2.09] rad and [−2.26, 0] rad. Hence, the proposed mechanism can safely develop the predefined rehabilitation

routine.

Finally, the prototype of the 1:6 scale modeling of the rehabilitation machine is manufactured with a three-

dimensional (3D) printer, and this is illustrated in Fig. 9. A video showing the rehabilitation mechanism’s movement

with the proposed concurrent design approach is given in the following link : www.dropbox.com/s/g2blg2dgsii91et/Proyecto.mp4?dl=0.300

5.4. Comparative analysis

To show the advantages of the proposed Concurrent Design (C.D.) in the rehabilitation mechanism, comparative

results between the design obtained by the proposal and the design achieved by using a Traditional Design (T.D.)
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(b) (c)

(a) (d) (e)

(f) (g) (h) (i)

Figure 8: Graphical representation of rehabilitation machine through a crank full-rotation.

approach is carried out. The traditional design involves the optimum kinematic synthesis of the rehabilitation mecha-

nism where the design variable vector pTra ∈ R17+Ñ is only related to the kinematic parameter vector p̃ki (the shape305

parameters are not considered). In this case, the optimum traditional design is accomplished with the optimum kine-

matic parameters obtained by the concurrent design, i.e., p∗Tra = p̃∗ki. The link shape parameters of the T.D. consider

rectangular and triangular shapes with the link width of 0.01 m (see dashed line links in Fig. 4). The link dynamic

parameters for both designs are included in Table 6. The total mass of links in the concurrent design is 49.04 Kg, whilst

the ones related to the traditional design is 11.63 Kg. An increment of 422% of the total mass of links is provided by310

the concurrent design with respect to the traditional design. The CAD of the rehabilitation mechanisms with both

designs is displayed in Fig. 10.

(a) Isometric view. (b) Lateral view.

Figure 9: Scale modeling prototype of the rehabilitation mechanism.
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m2 [kg] m3 [kg] m4 [kg] m5 [kg] m6 [kg] m7 [kg] m8 [kg]
C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D.

15.5292 | 0.2921 2.1218 | 1.6086 3.0092 | 1.6316 17.1338 | 1.7025 5.1925 | 3.4725 3.2289 | 1.3349 2.8290 | 1.5854

I2 [kg m2] I3 [kg m2] I4 [kg m2] I5 [kg m2] I6 [kg m2] I7 [kg m2] I8 [kg m2]
C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D.

0.3478 | 0.0013 0.1898 | 0.0824 0.1323 | 0.0776 0.6414 | 0.0593 0.2432 | 0.1009 0.2168 | 0.0478 0.2570 | 0.0471

lc2x [m] lc3x [m] lc4x [m] lc5x [m] lc6x [m] lc7x [m] lc8x [m]
C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D.

-0.1381 | -0.2951 -0.1787 | -0.0672 0.3484 | 0.3024 -0.2129 | -0.1841 -0.1305 | -0.1486 -0.3598 | -0.3573 0.1708 | -0.0375

lc2y [m] lc3y [m] lc4y [m] lc5y [m] lc6y [m] lc7y [m] lc8y [m]
C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D.

0.0103 | 0.0011 -0.0974 | -0.1556 0.0533 | 0.0168 0.1787 | 0.1380 0.3863 | 0.3300 0.0421 | -0.1559 -0.3246 | -0.3684

Table 6: Dynamic parameters of the Concurrent Design (C.D.) and the Traditional Design (T.D.).

(a) Concurrent design. (b) Traditional design.

Figure 10: Obtained mechanism design by using both approaches.

In Table 7, the comparative results of the performance functions in the precision points for both designs are

displayed. It is clear that both design approaches provide the same precision point tracking error J̄1. Nevertheless, the

concurrent design decreases the total applied torque J̄2 with respect to the traditional design.315

The last experiment includes the use of a Proportional-Integral (PI) controller to regulate the crank velocity to

ω2 = 2π rad/s with an applied force of ~FK8 = [0,−133.41]TN in the (xE , yE) coordinate of the mechanism. The same

controller gains are considered in both designs for the numerical simulation with an integration time of 1ms and a final

time of 3s. The corresponding crank velocities, the applied torques, and the magnitudes of the total mass center in both

designs are shown in Fig. 11. The velocity deviation in the steady-state in the C.D. is in the interval [6.2458, 6.3504],320

while in the T.D. is in [6.1849, 6.3605]. A reduction of 40.43% is presented in the C.D.. The total mass centers of the

mechanisms present fewer variations in the C.D. than the T.D.. This implies a reduction of the potential energy of

the mechanism designed by the C.D., which results in a more efficient static balance. The energy consumption is also

numerically provided in the last column of Table 7. It is important to note that the total power in the C.D. decreases

52.13% with respect to the T.D. in spite of having a larger total mass.325

Hence, the simultaneous consideration of the kinematic synthesis and the dynamics into the design of the eight-bar

mechanism results in a rehabilitation machine that consumes less energy, this can also reduce the control effort in the

system in such a way that it decreases the error velocity. Also, the integration of the shape design in the proposed
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J J̄1 [m2] J̄2 [N2m2] Energy [W]
C.D. | T.D. C.D. | T.D. C.D. | T.D. C.D. | T.D.

1.9585× 10−5 | 3.8159× 10−5 1.5399× 10−5 | 1.5399× 10−5 4.1857 | 22.76 14.2018 | 29.6728

Table 7: Performance function and the energy consumption of the obtained rehabilitation mechanism with the Concurrent Design (C.D.)
and the Traditional Design (T.D.).

T.D.

C.D.

Ref

T.D.

C.D.

T.D.

C.D.

(a) Velocity behavior (b) Torque behavior. (c) Total mass center magnitude

Figure 11: Velocity behavior w2, torque behavior τ and magnitude of total mass center ‖MC‖ of the eight-bar mechanism with a PI velocity
controller.

concurrent design approach can obtain real design solutions, i.e., it provides link shapes that can be manufactured.

Suppose that only the mass, the inertia, and the mass center parameters (dynamic parameters) of the links are obtained330

as design solutions as in the case of [5]. Then, another optimization process is required to fit those solutions to specific

link shapes, and it may produce unreal links or with significant differences in their dynamic parameters.

6. Conclusions

A methodology that integrates kinematic synthesis, structure shape design, and dynamic performance for rehabil-

itation machines is proposed and applied to a particular study case related to the eight-bar lower limb rehabilitation335

mechanism. Such design interactions in the concurrent design are stated as a nonlinear constrained dynamic optimiza-

tion problem and solved via different DE variants to obtain the most suitable design solution. Considering that the

mechanical structure is a load to be drive by the controller, the main characteristic of the proposed concurrent design

is that it is designed so that the dynamic behavior presents less load, which results in less control effort, and so, the

controller complexity may be reduced. It also gives the link shapes without requiring additional shape procedures.340

The comparative analysis of the result provided by the proposed concurrent design with a traditional design ap-

proach shows that the integration of kinematic synthesis, structure shape design, and dynamic performance can notably

influence the total power reduction at 52.13%, the velocity deviation in the steady-state at 40.43%, and in the imple-

mentation time. The latter because it provides real link shapes, i.e., it does not require time-consuming in another

optimization process to fit the obtained inertial properties to specific link shapes. Therefore, the proposed concurrent345

design approach can generate an improved rehabilitation mechanism.

On the other hand, one important factor to be considered in this kind of design methodology is the use of efficient

optimization algorithms such that they can also promote the synergy among design criteria. For the particular case,
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among DE variants, the DER1B can efficiently explore and exploit the design space such that better reconfigurability

in the rehabilitation mechanism design is achieved.350
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Supplementary material

“Integrated design of a lower limb rehabilitation mechanism using differential evolution”435

José Saúl Muñoz-Reina, M. G. Villarreal-Cervantes, Leonel Germán Corona Ramı́rez

Nomenclature

The paper adopts the following nomenclatures:

Parameter Definition Parameter Definition

~lŝ and ~l′s̄ The ŝ-th and s̄-th position vector lŝ and l′s̄ The ŝ-th and s̄-th magnitude of position vector

θŝ and θ′s̄ The ŝ-sth and s̄-sth direction of position vector s Link number

θ2 Crank position M1 and M2 Four-bar mechanism representation

M3 Five-bar mechanism representation θ̂s Offset angle

ωs The s-th angular velocity j Imaginary number

αs The s-th angular acceleration xs-ys Inertial coordinate

~lcs The s-th center of mass vector δs The s-th offset angle of the center of mass vector

lcs The s-th magnitude of the center of mass vector ~aGs
The s-th acceleration vector of the center of mass

aGsx
The x component of the s-th ~aGs

vector aGsy
The y component of the s-th ~aGs

vector

xgs-ygs The s-th coordinate axis in the center of mass k̂ Link node

~Rk̂s The k̂-th position vector in the s-th link Rk̂sx
The x component of the k̂-th ~Rk̂s vector in the s-th link

Rk̂sy
The y component of the k̂-th ~Rk̂s vector in the s-th link ~Fk̂s The k̂-th force vector in the s-th link

Fk̂sx
The x component of the k̂-th ~Fk̂s vector in the s-th link Fk̂sy

The y component of the k̂-th ~Fk̂s vector in the s-th link

ms The s-th link mass g Gravitational acceleration

IsG The s-th moment of inertia τ Torque

X̌ Forces and torque vector Ǎ Matrix into the dynamics

B̌ Vector into the dynamics bs, cs, ..., ks Link edge length

φs The s-th hole diameter k Simple geometry

mks The k-th mass in the s-th link ρs Material density

Iks The k-th moment of inertia in the s-th link J̄1 y J̄2 Terms of the objective function representing design objectives

J Objective function p Design parameters vector

κ1 y κ2 Weights of the design objectives in the weighted sum [xT , yT ] Desired precision points

g1, g2, ..., g12 Inequality constraints h1, h2 Equality constraints

[xini, yini] Initial coordinate of the path t Time

[x̄E , ȳE ] Desired path points [xE , yE ] Mechanism effector path

tf Final time Ñ Number of precision points

z1, z2, ..., z8 Collinear line with the link edge σvM Von Mises stress

Ā, B̄ y C̄ Coefficients of the line equation D̄ Distance from a line to a point

[xk̂s , yk̂s ] Hole center coordinate ζs Distance between the hole and the link edges

σks Stress in the hole as Contact area

Fcmin Minimum security factor σadm Permissible stress

ψs Minimum distance between holes G Generation

Gmax Max number of generations xi Population

NP Number of individuals H Height of a person

ui Child vector D Length of the design vector

cr Crossover factor F y K Scale factors

Ll Leg length Lt Thigh length

ξ Coxofemoral joint angle ϕ Knee joint angle

p̃ki Kinematic parameters p̃sh Shape parameters



Unknowns of the angular position analysis440

The position vector loop unknowns θ5, θ′6, θ3, θ4, θ7 and θ8 from equations (1)-(3) can be obtained applying the

Euler’s formula. Then, these are grouped to form Freudenstein’s equations. The solution of Freudenstein’s equations

can be obtained as quadratic ones, therefore the unknowns are defined as follows:

θ5 = 2atan2

−B̂2 ±
√
B̂2

2 + Â2
2 − Ĉ2

2

Ĉ2 − Â2

 (S1)

θ′6 = 2atan2

−B̂1 ±
√
B̂2

1 + Â2
1 − Ĉ2

1

Ĉ1 − Â1

 (S2)

θ3 = 2atan2

−B̂4 ±
√
B̂2

4 + Â2
4 − Ĉ2

4

Ĉ4 − Â4

 (S3)

θ4 = 2atan2

−B̂3 ±
√
B̂2

3 + Â2
3 − Ĉ2

3

Ĉ3 − Â3

 (S4)

θ7 = 2atan2

−B̂6 ±
√
B̂2

6 + Â2
6 − Ĉ2

6

Ĉ6 − Â6

 (S5)

θ8 = 2atan2

−B̂5 ±
√
B̂2

5 + Â2
5 − Ĉ2

5

Ĉ5 − Â5

 (S6)

where:

Â1 = 2l9l
′
6cosθ9 − 2l2l

′
6cosθ2 (S7)

l12 =
√
l21 + l29 − 2l1l9cos(θ1 − θ9) (S8)

B̂1 = 2l9l
′
6sinθ9 − 2l2l

′
6sinθ2 (S9)

θ12 = atan2

(
l1cosθ1 − l9cosθ9

l1sinθ1 − l9sinθ9

)
(S10)

Ĉ1 = l29 + l22 − l25 + l′26 − 2l9l2cos(θ9 − θ2) (S11)

θ′6 = θ6 + θ̂6 (S12)

Â2 = −2l9l5cosθ9 + 2l2l5cosθ2 (S13)

Â5 = 2l8l12cosθ12 − 2l6l8cosθ6 + 2l4l8cosθ4 (S14)

B̂2 = −2l9l5senθ9 + 2l2l5senθ2 (S15)

B̂5 = 2l8l12sinθ12 − 2l6l8senθ6 + 2l4l8senθ4 (S16)

Ĉ2 = l29 + l22 + l25 − l′26 − 2l9l2cos(θ9 − θ2) (S17)

(S18)



Ĉ5 = l24 + l26 + l28 + l212 − l27 + 2l4l12cos(θ4 − θ12) (S19)

Â3 = 2l1l4cosθ1 − 2l2l4cosθ2 − 2l4l6cos(θ4 − θ6)− 2l6l12cos(θ6 − θ12) (S20)

B̂3 = 2l1l4senθ1 − 2l2l4senθ2 (S21)

Â6 = −2l4l7cosθ4 + 2l6l7cosθ6 − 2l7l12cosθ12 (S22)

Ĉ3 = l21 + l22 − l23 + l24 − 2l1l2cos(θ1 − θ2) (S23)

B̂6 = −2l4l7senθ4 + 2l6l7senθ6 − 2l7l12sinθ12 (S24)

Â4 = −2l1l3cosθ1 + 2l2l3cosθ2 (S25)

Ĉ6 = l24 + l26 + l27 + l212 − l28 − 2l4l6cos(θ4 − θ6) (S26)

B̂4 = −2l1l3senθ1 + 2l2l3senθ2 + 2l4l12cos(θ4 − θ12)− 2l6l12cos(θ6 − θ12) (S27)

Ĉ4 = l21 + l22 + l23 − l24 − 2l1l2cos(θ1 − θ2) (S28)



Unknowns of the angular velocity analysis

The velocity vector loop unknowns ω2 - ω8 from (4)-(6) can be obtained applying the Euler’s formula. Separating445

the real and imaginary terms, these form a linear equation system. Solving the systems equations, the unknowns are

defined as follows:

ω3 = − l2sin(θ2 − θ4)

l3sin(θ3 − θ4)
ω2 (S29)

ω4 = − l2sin(θ2 − θ3)

l2sin(θ3 − θ4)
ω2 (S30)

ω5 = − l2sin(θ2 − θ′6)

l5sin(θ5 − θ′6)
ω2 (S31)

ω6 = − l2sin(θ2 − θ5)

l′6sin(θ5 − θ′6)
ω2 (S32)

ω7 = − l6sin(θ6 − θ8)

l7sin(θ7 − θ8)
ω6 +

l4sin(θ4 − θ8)

l7sin(θ7 − θ8)
ω4 (S33)

ω8 = − l6sin(θ6 − θ7)

l8sin(θ7 − θ8)
ω6 +

l4sin(θ4 − θ7)

l8sin(θ7 − θ8)
ω4 (S34)

Unknowns of the angular acceleration analysis

The acceleration vector loop unknowns α2 - α8 from (7)-(9), can be obtained applying the Euler’s formula. Separat-

ing the real and imaginary terms, the linear equation system is obtained. Solving the systems equations, the unknowns

are defined as follows:

α3 =− l2cos(θ2 − θ4)ω2
2 + l3cos(θ3 − θ4)ω2

3 − l4ω2
4

l3sin(θ3 − θ4)
− l2sin(θ2 − θ4)

l3sin(θ3 − θ4)
α2 (S35)

α4 =− l2cos(θ2 − θ3)ω2
2 − l4cos(θ3 − θ4)ω2

4 + l3ω
2
3

l4sin(θ3 − θ4)
− l2sin(θ2 − θ3)

l4sin(θ3 − θ4)
α2 (S36)

α5 =− l2cos(θ2 − θ′6)ω2
2 + l5cos(θ5 − θ′6)ω2

5 − l′6ω2
6

l5sin(θ5 − θ′6)
− l2sin(θ2 − θ′6)

l5sin(θ5 − θ′6)
α2 (S37)

α6 =− l2cos(θ2 − θ5)ω2
2 − l′6cos(θ5 − θ′6)ω2

6 + l5ω
2
5

l′6sin(θ5 − θ′6)
− α2l2sin(θ2 − θ5)

l′6sin(θ5 − θ′6)
(S38)

α7 =
l4cos(θ4 − θ8)ω2

4 − l6cos(θ6 − θ8)ω2
6 − l7cos(θ7 − θ8)ω2

7 + l8ω
2
8

l7sin(θ7 − θ8)
(S39)

+
l4sin(θ4 − θ8)

l7sin(θ7 − θ8)
α4 −

l6sin(θ6 − θ8)

l7sin(θ7 − θ8)
α6

α8 =
l4cos(θ4 − θ7)ω2

4 − l6cos(θ6 − θ7)ω2
6 + l8cos(θ7 − θ8)ω2

8 − l7ω2
7

l8sin(θ7 − θ8)
(S40)

+
l4sin(θ4 − θ7)

l8sin(θ7 − θ8)
α4 −

l6sin(θ6 − θ7)

l8sin(θ7 − θ8)
α6



Position vectors ~Rk̂s

The k̂ − th position vectors ~Rk̂s in the s− th link are described respect s− th link mass center. According to the450

Free-body diagram in Fig.1(b), the polar representation are shown in (S41)-(S56).

~RC2
= −lc2ej(θ2+δ2) (S41)

~RB2 = l2e
jθ2 + ~RC2 (S42)

~RC3
= −lc3ej(θ3+δ3) (S43)

~RB3 = l3e
jθ3 + ~RC3 (S44)

~RC4
= −lc4ej(θ4+δ4) (S45)

~RB4
= l4e

jθ4 + ~RC4
(S46)

~RC5
= −lc5ej(θ5+δ5) (S47)

~RB5
= l5e

jθ5 + ~RC5
(S48)

~RC6 = −lc6ej(θ6+δ6) (S49)

~RK6
= l′6e

jθ′6 + ~RC6
(S50)

~RB6 = l6e
jθ6 + ~RC6 (S51)

~RC7
= −lc7ej(θ7+δ7) (S52)

~RB7 = l7e
jθ7 + ~RC7 (S53)

~RC8
= −lc8ej(θ8+δ8) (S54)

~RB8
= l8e

jθ8 + ~RC8
(S55)

~RK8
= l′8e

jθ11 + ~RC8
(S56)

The Cartesian form of position vectors (S41)-(S56) is obtained by applying the Euler’s formula. With this repre-

sentation is possible to use them directly in the dynamics equations (17)-(37)



Equations of inverse dynamic model

The dynamics equations (17)-(37) of the rehabilitation mechanism can be expressed as X̌ = Ǎ−1B̌ to form the455

inverse dynamic model. The matrix Ǎ ∈ R21×21 can be expressed as shown in (S57), and the vector B̌ ∈ R21 is

defined in (S58).

Ǎ =



1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−RC2y
RC2x

−RB2y
RB2x

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 RC3y
−RC3x

0 0 −RB3y
RB3x

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 RB4y
−RB4x

−RC4y
RC4x

0 0 0 0 0 0 0 0 RB4y
−RB4x

0

0 0 −1 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 RC5y
−RC5x

RC5y
−RC5x

0 0 0 0 −RB5y
RB5x

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 RK6y
−RK6x

−RC6y
RC6x

−RB6y
RB6x

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 RC7y
−RC7x

−RB7y
RB7x

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RB8y
−RB8x

−RC8y
RC8x

0



(S57)

B̌ =



m2aG2x

m2aG2y +m2g

I2G
α2

m3aG3x

m3aG3y
+m3g

I3G
α3

m4aG4x

m4aG4x
+m4g

I4G
α4

m5aG5x

m5aG5y +m5g

I5G
α5

m6aG6x

m6aG6y
+m6g

I6G
α6

m7aG7x

m7aG7y
+m7g

I7G
α7

m8aG8x − FK8x

m8aG8x
+m8g − FK8y

I8G
α8 −RK8x

FK8y
+RK8y

FK8x



(S58)



Seat position

There are different ways to obtain the seat position, in this section, a method is presented based on the kinematics

of lower limb. In (S59), the kinematic equations of the lower limb are expressed from x1 − y1 coordinate (see Fig. 8).460

xA + Ltcos(θLt
) + Llcos(θLl

)− xE
yA + Ltsin(θLt

) + Llsin(θLl
)− yE

 =

0

0

 (S59)

where:

Lt = 0.53H − 0.285H

Ll = 0.285H − 0.039H

θLt
= −Γ− ξ

θLl
= −ϕ− θLt

(S60)

First, the vertical displacement yA of the seat position is obtained. This is considered fixed (with a constant value)

and is obtained as follows:

1. Choose the average height of the Mexican population i.e H = 1.7 m, and obtain the lower limb lengths Lt and

Ll with (S60).465

2. Find the minimum values of the xE and yE coordinates of the trajectory with respect to the x1 − y1 coordinate

system. In the particular case such coordinates are xE = −0.4825 and yE = −0.4182.

3. Consider the lower limb is in the rest position (the thigh is collinear to the x1 axis), i.e, the leg angle is ϕ =

−2π/9rad (-40 degrees), the thigh angle is ξ = 7π/18rad (70 degrees) and the seat tilt is Γ = 11π/18rad (110

degrees); and compute the lower limb angles θLt and θLl
.470

4. Compute yA using (S59). In this case yA = −0.1318 m.

Then, the xA seat coordinate (horizontal displacement) is compute. This must be computed as a function of the

human height H. Assuming the vertical displacement yA is fixed, and using sin(θLl
) = −yA+yE

Ll
obtained from the

second equation of (S59) (considering the rest position in the lower limb), the xA seat coordinate is given as,

xA = −Ltcos(θLt
) + Ll

√
1−

(
−yA + yE

Ll

)2

+ xE (S61)

Considering the rest position in the lower limb (with the commented previous values in yA, Γ, ξ ϕ, xE and yE),475

(S61) in terms of the human height H results,

xA = 0.245H + 0.246H

√
1− 1.194

H2
− 0.4825 (S62)

A linear equation which relates the human height H with the horizontal displacement of the seat xA is presented in

(S63). This is obtained by using a linear regression with the values presented with different heights H of the Mexican



population [S17] (H ∈ [1.63 m, 1.90 m]) in (S62).

xA = 0.5589H − 0.6959 (S63)

Note that the (xA, yA) coordinate represents the joint of the thigh. So, a small displacement in the negative direction480

of the vertical position is required to place the seat. In this work the displacement is set as 0.05 m and it may be

related to the half of the thigh clearance average (thigh thickness).
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